Lei de Coulomb
A Lei de Coulomb determina a força de interação (em Newton) entre duas cargas elétricas puntiformes.
Onde:
k = 8,987 (constante elétrica)
d = distância entre elas
- Mas, o que são cargas puntiforme?
De acordo com o professor André Diniz, podemos definir cargas puntiformes como “são aquelas reclusas a corpos cuja dimensão física são muito menores perante o sistema em que elas fazem parte”.
Ou seja, são cargas extremamente pequenas comparadas ao resto do sistema.
Vale lembrar que a Força Elétrica é uma grandeza vetorial e por isso apresenta sentido.É possível compreender melhor essa definição nas imagens a seguir:
- Fq e Fq’ tem valores iguais e sentidos vetoriais diferentes.O vetor representa a repulsão entre as cargas iguais.
- Fq e Fq’ tem valores iguais e sentidos vetoriais diferentes.O vetor representa a atração entre as cargas diferentes.
Força elétrica produzida por mais de uma carga puntiforme
Para calcular a força, deve-se utilizar a mesma fórmula citada anteriormente. A diferença é que para o cálculo sair corretamente devemos considerar cada dupla de carga por vez.
Por exemplo, o desenho a seguir mostra uma área em que uma carga sofre influência da força elétrica de duas outras. Nesse caso, vamos calcular a força entre Q e Q1 e entre Q e Q2. Para finalizar esse processo iremos considerar a força de maior intensidade e subtrair desta a de menor intensidade. Teremos assim a força resultante.
No desenho, percebe-se que a FQ2 é maior, por isso o vetor resultante irá para direção desta.
Campo elétrico
O Campo Elétrico(E) é uma região de influência que surge ao redor de qualquer carga carregada e aplicará força sobre qualquer carga que estiver contida dele. Vale lembrar que, o campo elétrico é exatamente uma região onde as cargas não precisam se encostar para que haja interação.
Linhas de força
As linhas de força sempre saem das cargas positivas e entram nas cargas negativas.
DINIZ, André.(2006). Eletromagnetismo [Apostila de sala de aula].Eletrotécnica, IF Sudeste MG, Juiz de Fora, MG. p. 12 - 23


0 comentários:
Postar um comentário